Food chains, also called, food networks and/or trophic networks, describe the feeding relationships between species within an ecosystem. Organisms are connected to the organisms they consume by arrows representing the direction of biomass or energy transfer. It also shows how the energy from the producer is given to the consumer.Typically a food chain or food web refers to a graph where only connections are recorded, and a food network or ecosystem network refers to a network where the connections are given weights representing the quantity of nutrients or energy being transferred.
A food chain is the flow of energy from one organism to the next and to the next and to the next. Organisms in a food chain are grouped into trophic levels,based on how many links they are removed from the primary producers. Trophic levels may contain either a single species or a group of species that are presumed to share both predators and prey. They usually start with a plant and end with a carnivore. The diagram at right is a food chain from a Swedish lake. It can be described as follows: osprey feed on northern pike that feed on perch that eat bleak that feed on freshwater shrimp. Although they are not shown in this diagram, the primary producers of this food chain are probably autotrophic phytoplankton. Phytoplankton and algae form the base of most freshwater food chains. It is often the case that biomass of each trophic level decreases from the base of the chain to the top. This is because energy is lost to the environment with each transfer. On average, only 10% of the organism's energy is passed on to its predator. The other 90% is used for the organism's life processes or it is lost as heat to the environment. Graphic representations of the biomass or productivity at each tropic level are called trophic pyramids. In this food chain for example, the biomass of osprey is smaller than the biomass of pike, which is smaller than the biomass of perch. Some producers, especially phytoplankton, are so productive and have such a high turnover rate that they can actually support a larger biomass of grazers. This is called an inverted pyramid, and can occur when consumers live longer and grow more slowly than the organisms they consume. In this food chain, the productivity of phytoplankton is much greater than that of the zooplankton consuming them. The biomass of the phytoplankton, however, may actually be less than that of the copepods. Directly linked to this are pyramids of numbers, which show that as the chain is travelled along, the number of consumers at each level drops very significantly, so that a single top consumer (e.g. a Polar Bear) will be supported by literally millions of separate producers (e.g. Phytoplankton). i am doing some school research. any help at any time wud be appreciated greatly! tanx for the support
No comments:
Post a Comment